Skip to content
NextLytics
Megamenü_2023_Über-uns

Shaping Business Intelligence

Ob clevere Zusatzprodukte für SAP BI, Entwicklung aussagekräftiger Dashboards oder Implementierung KI-basierter Anwendungen - wir gestalten zusammen mit Ihnen die Zukunft von Business Intelligence. 

Megamenü_2023_Über-uns_1

Über uns

Als Partner mit tiefem Prozess-Know-how, Wissen der neuesten SAP-Technologien sowie hoher sozialer Kompetenz und langjähriger Projekterfahrung gestalten wir die Zukunft von Business Intelligence auch in Ihrem Unternehmen.

Megamenü_2023_Methodik

Unsere Methodik

Die Mischung aus klassischem Wasserfallmodell und agiler Methodik garantiert unseren Projekten eine hohe Effizienz und Zufriedenheit auf beiden Seiten. Erfahren Sie mehr über unsere Vorgehensweise.

Produkte
Megamenü_2023_NextTables

NextTables

Daten in SAP BW out of the Box bearbeiten: Mit NextTables wird das Editieren von Tabellen einfacher, schneller und intuitiver, egal ob Sie SAP BW on HANA, SAP S/4HANA oder SAP BW 4/HANA nutzen.

Megamenü_2023_Connector

NextLytics Connectoren

Die zunehmende Automatisierung von Prozessen erfordert die Konnektivität von IT-Systemen. Die NextLytics Connectoren ermöglichen eine Verbindung Ihres SAP Ökosystems mit diversen open-source Technologien.

IT-Services
Megamenü_2023_Data-Science

Data Science & Engineering

Bereit für die Zukunft? Als starker Partner stehen wir Ihnen bei der Konzeption, Umsetzung und Optimierung Ihrer KI-Anwendung zur Seite.

Megamenü_2023_Planning

SAP Planning

Wir gestalten neue Planungsanwendungen mithilfe von SAP BPC Embedded, IP oder  SAC Planning, die einen Mehrwert für Ihr Unternehmen schaffen.

Megamenü_2023_Dashboarding

Dashboarding

Mit unserer Expertise verhelfen wir Ihnen auf Basis von Tableau, Power BI, SAP Analytics Cloud oder SAP Lumira zu aussagekräftigen Dashboards. 

Megamenü_2023_Data-Warehouse-1

SAP Data Warehouse

Planen Sie eine Migration auf SAP HANA? Wir zeigen Ihnen, welche Herausforderungen zu beachten sind und welche Vorteile eine Migration bringt.

Business Analytics
Megamenü_2023_Procurement

Procurement Analytics

Transparente und valide Zahlen sind vor allem in Unternehmen mit dezentraler Struktur wichtig. SAP Procurement Analytics ermöglicht die Auswertung von SAP ERP-Daten in SAP BI.

Megamenü_2023_Reporting

SAP HR Reporting & Analytics

Mit unserem Standardmodell für Reporting von SAP HCM mit SAP BW beschleunigen Sie administrative Tätigkeiten und stellen Daten aus verschiedenen Systemen zentral und valide zur Verfügung.

Megamenü_2023_Dataquality

Data Quality Management

In Zeiten von Big Data und IoT kommt der Vorhaltung einer hohen Datenqualität eine enorm wichtige Bedeutung zu. Mit unserer Lösung für Datenqualitätsmanagement (DQM) behalten Sie stets den Überblick.

Karriere
Megamenü_2023_Karriere-2b

Arbeiten bei NextLytics

Wenn Du mit Freude zur Arbeit gehen möchtest und dabei Deine berufliche und persönliche Weiterentwicklung nicht zu kurz kommen soll, dann bist Du bei uns genau richtig! 

Megamenü_2023_Karriere-1

Berufserfahrene

Zeit für etwas Neues? Gehe Deinen nächsten beruflichen Schritt und gestalte Innovation und Wachstum in einem spannenden Umfeld zusammen mit uns!

Megamenü_2023_Karriere-5

Berufseinsteigende

Schluss mit grauer Theorie - Zeit, die farbenfrohe Praxis kennenzulernen! Gestalte bei uns Deinen Einstieg ins Berufsleben mit lehrreichen Projekten und Freude an der Arbeit.

Megamenü_2023_Karriere-4-1

Studierende

Du möchtest nicht bloß die Theorie studieren, sondern Dich gleichzeitig auch praktisch von ihr überzeugen? Teste mit uns Theorie und Praxis und erlebe wo sich Unterschiede zeigen.

Megamenü_2023_Karriere-3

Offene Stellen

Hier findest Du alle offenen Stellenangebote. Schau Dich um und bewirb Dich - wir freuen uns! Falls keine passende Stelle dabei ist, sende uns gerne Deine Initiativbewerbung zu.

Blog
NextLytics Newsletter Teaser
Hier für unseren monatlichen Newsletter anmelden!
Newsletter abonnieren
 

Machine Learning Trends auf der PyCon und PyData Konferenz 2024

Die PyCon DE und PyData Berlin sind ein etablierter Leuchtturm im jährlichen Terminkalender der Python Community. Entwickler, Experten und Enthusiasten verschiedenster Hintergründe sind in diesem Jahr zur gemeinsamen Konferenz für drei Tage in Berlin zusammengekommen. Insgesamt 1500 Personen waren vor Ort anwesend und haben an Vorträgen und Workshops aus nicht weniger als sieben meist parallelen Tracks teilgenommen und Wissen ausgetauscht.

Wir waren für Sie dabei und möchten unsere Eindrücke der Konferenz gerne teilen: Heute schauen wir auf Neuerungen und Trends aus dem Themenkomplex des Machine Learning und seiner Anwendungsfelder. In einem späteren Beitrag folgen die Eindrücke und Highlights aus der Perspektive des Data Engineering.

impressions_conference_Machine_Learning_Trends

KI ist hier, ML ist abgelöst?

Das große Modewort der jüngeren Zeit ist einmal wieder KI, künstliche Intelligenz, oder - in der internationalen Form - AI, artificial intelligence. Auch im Programm der PyData Konferenz haben sich somit 2024 viele Beiträge zur Umsetzung von “KI” mittels Python, zur Anwendung in verschiedenen Szenarien oder zur technischen Optimierung der sogenannten Generative AI (GenAI) und Large Language Models (LLM) wiedergefunden. Den wichtigsten Beitrag dazu hat aus unserer Perspektive Prof. Ricardo Baeza-Yates in seiner Keynote geliefert: Welche Fragen man sich stellen sollte, bevor man auf den KI-Zug aufspringt. Rechtliche, ökologische aber auch ingenieurwissenschaftliche Aspekte sollten bei der Entscheidung berücksichtigt werden, ob die Verwendung hochkomplexer und extrem energieintensiver statistischer Modelle für eine bestimmte Anwendung überhaupt sinnvoll ist.

Im Kielwasser des AI-Hype werden die Methoden des maschinellen Lernens (Machine Learning, ML) immer besser, immer leichter zugänglich für die Verwendung im wirtschaftlichen Alltag. John Sandall hat in einem sehr unterhaltsamen Vortrag praktisch live am eigenen Laptop ein leichtgewichtiges Tool zur vollautomatischen Audiotranskription und inhaltlichen Zusammenfassung von Sprachaufnahmen entwickelt. Ein tolles Beispiel, wie modernste Technologien zur Optimierung des Arbeitsalltags auch ohne teure und datenschutzrechtlich bedenkliche Cloud-Services genutzt werden können.

pycon_jsandall_Machine_Learning_Trends

John Sandall demonstriert ein in Python geschriebenes Open-Source-Audiotranskriptions- und Zusammenfassungswerkzeug.
Während er spricht, transkribiert und fasst die Software seine Worte mit geringer Verzögerung zusammen. (Quelle: PyConDE/PyData Berlin)

Machine Learning in Datenbanken

Immer mehr Datenbank- und Data-Warehouse-Systeme haben mittlerweile typische Machine Learning Methoden direkt integriert oder bieten Schnittstellen für die Definition und Integration eigener Methoden und Modelle an. Der Trend ist lange bekannt: es ist leichter, den Algorithmus zu den Daten zu bringen als umgekehrt. Gregor Bauer hat dieses Konzept am Beispiel der NoSQL Datenbank Couchbase vorgestellt: Beliebiger Python Code für ein ML-Modell kann per Schnittstelle in die Datenbank eingehängt und in der Engine als benutzerdefinierte Funktion registriert werden. Die Funktion steht fortan in sämtlichen SQL-Abfragen auf die Inhalte der Datenbank zur Verfügung. Umsatzprognosen und Planungszahlen können so live aus dem Datenbestand erzeugt werden, ohne langwierige Transformations- und Berechnungs-Routinen.

schema_ML_model_Database_Machine_Learning_Trends

Viele SQL- und NoSQL-Datenbanksysteme unterstützen Plug-in-Ins für maschinelles Lernen.
Anstatt eine komplexe Infrastruktur wie Feature Stores und Model Registry zu betreiben, wird ein ML-Modell trainiert, verpackt und direkt in die Datenbank Engine hochgeladen. Die Inferenz kann dann wie eine native Datenbankfunktion abgefragt werden, um sie zu nutzen.


Laden Sie unser Whitepaper herunter und entdecken Sie das Potenzial von Künstlicher Intelligenz und Machine Learning!

KI und ML für Ihr Business


Machine Learning überall

Nicht nur in modernen Datenbanksystemen können ML-Modelle direkt integriert werden. Mit dem MicroPython Framework lassen sich einfache Machine Learning Applikationen selbst auf Mikrocontrollern ausführen, also kleinsten Prozessoren, die im “Internet of Things” verbaut werden. Jon Nordby hat unter anderem die Anwendung in Industriesensoren zur Schwingungsmessung vorgestellt. Mittels Python-ML-Screening direkt auf dem Mikrocontroller an einer Turbine werden Sensordaten auf Muster untersucht, die einen Störfall darstellen könnten. Das Datenvolumen, das an ein zentrales Monitoringsystem übertragen werden muss, kann so drastisch reduziert werden.

Alle ML-Probleme gelöst?

ML-Anwendungen sind heutzutage überall. Sie sind in Cloud-Plattformen, BI-Tools und Datenbanksystemen direkt verfügbar. Gleichzeitig gilt das alte Sprichwort: Der Teufel steckt im Modell. Oder so ähnlich. Auch auf der PyData Berlin 2024 haben wir einige Beiträge gesehen, die Lösungsvorschläge für bestimmte Herausforderungen angeboten und gleichzeitig untermauert haben, dass diese Probleme nur schwer pauschalisiert werden können.

So haben beispielsweise Miguel de Benito Delgado und Kristof Schröder aktuelle Ansätze aus dem noch aktiven Forschungsgebiet der “data valuation” vorgestellt: Data Valuation steht im Kontext von Machine Learning Modellen für die Frage, welchen Informationsgewinn  (oder -verlust) bestimmte Datensätze oder Datenpunkte für die Vorhersagequalität eines Modells bedeuten. In der Praxis können hier verschiedene mathematische Ansätze genutzt werden, um mögliche Fehler oder Unreinheiten in einem Trainingsdatensatz zu identifizieren oder das Feature Engineering für ein ML-Modell zu optimieren.

pycon_coldstart_Machine_Learning_Trends

Daria Mokrytska stellt auf der PyData Konferenz das Kaltstartproblem bei Zeitreihenprognosen vor:
Für ein bestimmtes Objekt von Interesse sind keine Trainingsdaten verfügbar. (Quelle: PyConDE/PyData Berlin)

Das Kaltstartproblem bei Zeitreihenprognosen beschreibt, dass reale Anwendungsfälle beispielsweise bei Umsatz- oder Absatzprognosen immer auch für Produkte Aussagen treffen sollen, für die wenig oder keine historischen Daten vorliegen. Modelle können grundsätzlich keine Aussagen über das zukünftige Verhalten bislang unbekannter Objekte machen. Daria Mokrytska und Alexander Meier haben einige Ansätze vorgestellt, wie das Wissen über bekannte Objekte auf bislang unbekannte Objekte übertragen werden kann. Perfekte Lösungen gibt es hier keine, aber es können mit relativ einfachen Heuristiken gute Näherungen erzielt werden.

Neben diesen rein technisch-fachlichen Herausforderungen hat Katherine Jarmul in ihrem Vortrag eindrücklich auf Risiken von Deep Learning Modellen hinsichtlich Vertraulichkeit aufmerksam gemacht. Insbesondere Trainingsdaten, die weit von der Norm oder dem Durchschnitt abweichen, werden teilweise vollständig im Modell gespeichert und können so über gezielte Abfragen auch wieder reproduziert werden. Modelle, die mit schützenswerten personenbezogenen Daten oder Geschäftsgeheimnissen trainiert werden, stellen somit eine potenzielle Sicherheitslücke dar. Technische Lösungsansätze sind hier in aller Regel kompliziert. Dedizierte, in bestimmten eigenverantwortlichen Domänen entwickelte, trainierte und verwendete KI-Modelle könnten einen kulturellen Gegenentwurf zu den großen, globalen Modellen der aktuellen Generation darstellen.

Sehen wir uns nächstes Jahr?

Der Besuch auf der PyCon / PyData Berlin Konferenz hat uns in diesem Jahr viele spannende Eindrücke vermittelt. Mit Fokus auf das Thema Machine Learning im geschäftlichen Kontext lässt sich feststellen, dass ein hoher Reifegrad erreicht zu sein scheint, wenngleich es fortlaufend Optimierungsbedarf und Herausforderungen gibt. Selbstläufer sind Machine Learning und KI-Anwendungen auch im Jahr 2024 noch nicht. Zur gewinnbringenden Anwendung benötigen Sie spezifisches Expertenwissen über die verwendeten Methoden, ihre Fall- und Hintertüren. Sprechen Sie gerne mit uns über Ihre Vorhaben oder aktuelle Herausforderungen aus den Bereichen ML und KI.

In Kürze folgt ein zweiter Teil unseres Rückblicks mit dem Fokus auf Data Engineering Themen. Auf der Konferenz gibt es dennoch weit mehr zu sehen und zu erleben, als sich in diesen kurzen Berichten einfangen lässt. Vielleicht treffen wir Sie ja im nächsten Jahr persönlich auf der PyCon/PyData?

Erfahren Sie mehr über Machine Learning und KI

avatar

Markus Suhr

Markus Suhr ist seit 2022 als Senior Berater für Machine Learning und Data Engineering bei der NextLytics AG tätig. Mit einschlägiger Erfahrung als Systemarchitekt und Teamleiter im Bereich Data Engineering kennt er sich bestens mit Microservices, Datenbanken und Workflow Orchestrierung aus - insbesondere im Bereich der Open Source Lösungen. In seiner Freizeit versucht er, das komplexe System des Gemüseanbaus im eigenen Garten zu optimieren.

Sie haben eine Frage zum Blog?
Fragen Sie Markus Suhr

Gender Hinweis Aufgrund der besseren Lesbarkeit wird im Text das generische Maskulinum verwendet. Gemeint sind jedoch immer alle Menschen.
Machine Learning Trends auf der PyCon und PyData Konferenz 2024
8:34

Blog - NextLytics AG 

Welcome to our blog. In this section we regularly report on news and background information on topics such as SAP Business Intelligence (BI), SAP Dashboarding with Lumira Designer or SAP Analytics Cloud, Machine Learning with SAP BW, Data Science and Planning with SAP Business Planning and Consolidation (BPC), SAP Integrated Planning (IP) and SAC Planning and much more.

Informieren Sie mich über Neuigkeiten

Verwandte Beiträge

Letzte Beiträge