Skip to content
NextLytics
Megamenü_2023_Über-uns

Shaping Business Intelligence

Whether clever add-on products for SAP BI, development of meaningful dashboards or implementation of AI-based applications - we shape the future of Business Intelligence together with you. 

Megamenü_2023_Über-uns_1

About us

As a partner with deep process know-how, knowledge of the latest SAP technologies as well as high social competence and many years of project experience, we shape the future of Business Intelligence in your company too.

Megamenü_2023_Methodik

Our Methodology

The mixture of classic waterfall model and agile methodology guarantees our projects a high level of efficiency and satisfaction on both sides. Learn more about our project approach.

Products
Megamenü_2023_NextTables

NextTables

Edit data in SAP BW out of the box: NextTables makes editing tables easier, faster and more intuitive, whether you use SAP BW on HANA, SAP S/4HANA or SAP BW 4/HANA.

Megamenü_2023_Connector

NextLytics Connectors

The increasing automation of processes requires the connectivity of IT systems. NextLytics Connectors allow you to connect your SAP ecosystem with various open-source technologies.

IT-Services
Megamenü_2023_Data-Science

Data Science & Engineering

Ready for the future? As a strong partner, we will support you in the design, implementation and optimization of your AI application.

Megamenü_2023_Planning

SAP Planning

We design new planning applications using SAP BPC Embedded, IP or SAC Planning which create added value for your company.

Megamenü_2023_Dashboarding

Dashboarding

We help you with our expertise to create meaningful dashboards based on Tableau, Power BI, SAP Analytics Cloud or SAP Lumira. 

Megamenü_2023_Data-Warehouse-1

SAP Data Warehouse

Are you planning a migration to SAP HANA? We show you the challenges and which advantages a migration provides.

Business Analytics
Megamenü_2023_Procurement

Procurement Analytics

Transparent and valid figures are important, especially in companies with a decentralized structure. SAP Procurement Analytics allows you to evaluate SAP ERP data in SAP BI.

Megamenü_2023_Reporting

SAP HR Reporting & Analytics

With our standard model for reporting from SAP HCM with SAP BW, you accelerate business activities and make data from various systems available centrally and validly.

Megamenü_2023_Dataquality

Data Quality Management

In times of Big Data and IoT, maintaining high data quality is of the utmost importance. With our Data Quality Management (DQM) solution, you always keep the overview.

Career
Megamenü_2023_Karriere-2b

Working at NextLytics

If you would like to work with pleasure and don't want to miss out on your professional and personal development, we are the right choice for you!

Megamenü_2023_Karriere-1

Senior

Time for a change? Take your next professional step and work with us to shape innovation and growth in an exciting business environment!

Megamenü_2023_Karriere-5

Junior

Enough of grey theory - time to get to know the colourful reality! Start your working life with us and enjoy your work with interesting projects.

Megamenü_2023_Karriere-4-1

Students

You don't just want to study theory, but also want to experience it in practice? Check out theory and practice with us and experience where the differences are made.

Megamenü_2023_Karriere-3

Jobs

You can find all open vacancies here. Look around and submit your application - we look forward to it! If there is no matching position, please send us your unsolicited application.

Blog
NextLytics Newsletter Teaser
Sign up now for our monthly newsletter!
Sign up for newsletter
 

Machine Learning in customer segmentation with RFM-analysis

Due to increasing competitive pressure, it is becoming more and more important to know and address the individual needs of your customers. For a large and diverse customer base, however, it is very time-consuming and resource-intensive to provide personalized service to each customer. Customer segmentation enables the automatic identification of different customer groups with specific characteristics and buying behavior. 

By improving customer understanding, targeted marketing strategies can be developed, thereby increasing customer loyalty and increasing your company's sales. Customer segmentation thus forms the basis for successful customer relationship management (CRM).

In this article, you will learn how to segment your customer base using the field-proven RFM-analysis. Furthermore, the limitations of this model will be presented, as well as alternative methods in the area of machine learning.

Customer segmentation

Several segmentation criteria are available for customer segmentation. Customer groups can be formed based on demographic characteristics (age, earnings, industry, etc.) as well as purchasing history (sales, purchasing activity, etc.). The RFM-analysis focuses on the latter. The descriptive approach impresses with its ease of implementation, intuitive handling, and pleasant flexibility.

Develop targeted marketing strategies using RFM-analysis

RFM-analysis is a multi-dimensional scoring method focusing on the following three parameters:

  • Recency (R) of a customer: Days since the last purchase.
  • Frequency (F) of the bookings/turnover of a customer: Number of purchases, e.g., in 6 months.
  • Monetary (M) - The total turnover of a customer: Sum of sales, e.g., in 6 months.

As a result, RFM-analysis can be performed whenever a database with the required transaction information of each customer is available.

After the determination of the Recency, Frequency, and Monetary values of all considered customers, R, F, and M scores or classes are computed based on these values. These classes can be divided either by fixed intervals or by quartiles or quantiles so that each class contains the same number of customers. We recommend the first variant since no overlaps can occur, and the value range can be chosen flexibly, e.g., in coordination with preliminary information from the sales department. Besides, it is not necessary to obtain groups of the same size in customer segmentation. Customers with unusual behavior would not noticeably differentiate themselves.

The customer segmentation and calculations are shown using a randomly generated data set as an example:

customer segmentation and calculation in a data set

For the sake of clarity, for an example scenario, it is assumed that a small customer database of 200 customers is given. In reality, a database consists of far more customers with a great variety. In this scenario, customers are supposed to be segmented based on their purchasing behavior over the last six weeks. The selection of the considered period can vary depending on the products sold by your company. Recommended are, e.g., quarterly, half-yearly, and annual calculations.


How to bring SAP BW and state of the art Machine Learning together

Whitepaper Machine Learning


The first step is the determination of the Recency, Frequency, and Monetary values of each customer. In this example, the resulting value ranges are divided into four bins and assigned to the R, F, and M-Scores 1 - 4 accordingly. Score 1 stands for the best possible result and 4 for the worst. Since high recency indicates non-recurring revenues, customers with maximum recency values get an R-score of 4. Customers who have made frequent bookings within the last six weeks and therefore have maximum frequency values get an F-score of 1. Accordingly, customers with maximum monetary values are assigned an M-score of 1. The different scores are merged into the so-called RFM-Score, which describes the respective customer quality. This value can be interpreted, in the most general sense, as Customer Lifetime Value (CLV). With four bins each, up to 64 different RFM-Scores or customer groups result. Considering the high number, it becomes difficult to detect significant differences between the groups. For this reason, the customer groups are consolidated into segments. The graphic shows an exemplary segmentation of the customer groups or scores.

segmentation of the customer groups or scores.

Accordingly, customers with the optimal RFM score of 111 are classified as top customers, and those with the worst RFM score of 444 are classified as lost customers.

In this way, a customer database of any size can be segmented. The result of the RFM labeling on the sample data set can be seen in the following treemap:

Treemap RFM labeling

Based on the different segments, individual marketing strategies can be developed. An example: For a high-income customer with an RFM-scoring of 421 from the segment Customers at risk, the last transaction took place some time ago. Of course, it is not advisable to lose high-income customers - but there is a risk that this customer will migrate to the competition. To prevent this, personal contact can be established by the sales department, a contract extension can be offered, and/or new innovative products can be highlighted.

Another customer with the Scoring 141 from the Unsteady Customers segment could be a new customer due to the high recency and low frequency. The high monetary value indicates a great potential to generate more revenue from this customer in the future. In this case, it is advisable to provide more support to the customer at the beginning (on-board support) and to establish a close customer relationship in the long term, for example, to present and market new products directly (cross-selling). On the other hand, a customer of the same group with a score of 214 and thus with a lower monetary value could be advertised with special offers such as quantity discounts or reduced products (up-selling).

These examples show that RFM-analysis can identify defined customer groups with distinctive business development and thus support sales and management.

Advantages and limitations of RFM-analysis

The chosen example shows that RFM-analysis can be used for a wide range of business units and business cases. The assumptions and attributes of the model can be changed in a targeted manner. For example, customers can be split up in advance based on certain characteristics (e.g., by industry) and the RFM-analysis can thus be performed on an industry-specific basis.

RFM-analysis can also be extended by the Length parameter (LRFM-analysis), which describes the number of days since the first contract was signed and how long the customer has been stored in the database.

Furthermore, the computed parameters are well suited as features for clustering methods from the machine learning area and thus offer a foundation for forecasting models. However, this shows the limitations of RFM-analysis, as it is not able to predict the future behavior of a customer on its own. It can only access past data and, for example, make comparisons with the customer's behavior in previous years. Nevertheless, the analysis is suitable for deriving short-term actions (personal contact, discounts, etc.)

Customer segmentation with artificial intelligence

Machine Learning methods are becoming increasingly popular in the field of customer management. In segmentation, clustering algorithms such as K-Means or DBSCAN are of special interest. Based on these, classification or time series algorithms can be used to predict the purchasing behavior of customers in the future. This allows early detection of customers behaving differently, e.g., due to a certain event (e.g., corona lockdown). Classification algorithms can also be used to predict whether or not a customer will react to a specific marketing offer.

The Predictive Analysis Library (PAL), as part of the SAP ecosystem, contains predefined algorithms for various applications, including customer segmentation. This enables you to perform in-database machine learning at high speed. In this blog article, we give an overview of the PAL.

RFM-analysis - Our Conclusion

It is a fact that every company benefits from customer segmentation. With RFM-analysis, different groups of customers with similar characteristics can be quickly identified and business-relevant insights can be deduced. It offers many advantages such as its universal application in various areas (finance, marketing, sales) as well as its adaptability and flexibility. However, it is only a status quo analysis which can be used in classical BI reporting to enable a basic descriptive segmentation, i.e., it quickly reaches its limits and shows weaknesses in the methodology. In contrast, methods from the machine learning area, instead of the descriptive approach, predominantly use distance metrics to determine customer segments. To optimize your processes, machine learning can be the path to success. In order not to lose the overview and control, we recommend our whitepaper "SAP BW and State of the Art Machine Learning". In this paper, we examine - in addition to the entire machine learning portfolio of SAP - an open-source supported approach based on the NextLytics Python Software Development Kit (NLY-SDK) and give clear recommendations on how you can get the most out of your data.

Learn more about Machine Learning and AI

,

avatar

Jasmin

Jasmin has been working as a consultant in the field of data analytics and machine learning since June 2020. She has already gained experience in revenue prediction, time series forecasting and customer segmentation, both in the Python ecosystem and SAP context. In her free time she likes to travel and do sports.

Got a question about this blog?
Ask Jasmin

Blog - NextLytics AG 

Welcome to our blog. In this section we regularly report on news and background information on topics such as SAP Business Intelligence (BI), SAP Dashboarding with Lumira Designer or SAP Analytics Cloud, Machine Learning with SAP BW, Data Science and Planning with SAP Business Planning and Consolidation (BPC), SAP Integrated Planning (IP) and SAC Planning and much more.

Subscribe to our newsletter

Related Posts

Recent Posts