Skip to content
NextLytics
Megamenü_2023_Über-uns

Shaping Business Intelligence

Whether clever add-on products for SAP BI, development of meaningful dashboards or implementation of AI-based applications - we shape the future of Business Intelligence together with you. 

Megamenü_2023_Über-uns_1

About us

As a partner with deep process know-how, knowledge of the latest SAP technologies as well as high social competence and many years of project experience, we shape the future of Business Intelligence in your company too.

Megamenü_2023_Methodik

Our Methodology

The mixture of classic waterfall model and agile methodology guarantees our projects a high level of efficiency and satisfaction on both sides. Learn more about our project approach.

Products
Megamenü_2023_NextTables

NextTables

Edit data in SAP BW out of the box: NextTables makes editing tables easier, faster and more intuitive, whether you use SAP BW on HANA, SAP S/4HANA or SAP BW 4/HANA.

Megamenü_2023_Connector

NextLytics Connectors

The increasing automation of processes requires the connectivity of IT systems. NextLytics Connectors allow you to connect your SAP ecosystem with various open-source technologies.

IT-Services
Megamenü_2023_Data-Science

Data Science & Engineering

Ready for the future? As a strong partner, we will support you in the design, implementation and optimization of your AI application.

Megamenü_2023_Planning

SAP Planning

We design new planning applications using SAP BPC Embedded, IP or SAC Planning which create added value for your company.

Megamenü_2023_Dashboarding

Dashboarding

We help you with our expertise to create meaningful dashboards based on Tableau, Power BI, SAP Analytics Cloud or SAP Lumira. 

Megamenü_2023_Data-Warehouse-1

SAP Data Warehouse

Are you planning a migration to SAP HANA? We show you the challenges and which advantages a migration provides.

Business Analytics
Megamenü_2023_Procurement

Procurement Analytics

Transparent and valid figures are important, especially in companies with a decentralized structure. SAP Procurement Analytics allows you to evaluate SAP ERP data in SAP BI.

Megamenü_2023_Reporting

SAP HR Reporting & Analytics

With our standard model for reporting from SAP HCM with SAP BW, you accelerate business activities and make data from various systems available centrally and validly.

Megamenü_2023_Dataquality

Data Quality Management

In times of Big Data and IoT, maintaining high data quality is of the utmost importance. With our Data Quality Management (DQM) solution, you always keep the overview.

Career
Megamenü_2023_Karriere-2b

Working at NextLytics

If you would like to work with pleasure and don't want to miss out on your professional and personal development, we are the right choice for you!

Megamenü_2023_Karriere-1

Senior

Time for a change? Take your next professional step and work with us to shape innovation and growth in an exciting business environment!

Megamenü_2023_Karriere-5

Junior

Enough of grey theory - time to get to know the colourful reality! Start your working life with us and enjoy your work with interesting projects.

Megamenü_2023_Karriere-4-1

Students

You don't just want to study theory, but also want to experience it in practice? Check out theory and practice with us and experience where the differences are made.

Megamenü_2023_Karriere-3

Jobs

You can find all open vacancies here. Look around and submit your application - we look forward to it! If there is no matching position, please send us your unsolicited application.

Blog
NextLytics Newsletter Teaser
Sign up now for our monthly newsletter!
Sign up for newsletter
 

Delta Loading in SAP Datasphere

Delta loading is a crucial feature of enterprise Data Warehouses (DWH) which ensures continuous and stable performance while regularly replicating data from source systems into the DWH and ensuring minimal impact on all involved systems. This is commonly achieved by leveraging a mechanism which can determine the minimum required rows of source data to be transferred to the DWH to guarantee the target model to be up-to-date. The concrete implementation of this mechanism varies greatly between various DWH solutions even within the SAP product landscape.

In this article we would like to showcase what we have found during our client engagements and internal testing as to the extent and functionality of delta loading capabilities that SAP Datasphere [formerly known as SAP Data Warehouse Cloud (DWC)] offers and their corresponding limitations. While the delta capabilities of Datasphere are indeed still quite restricted compared to SAP Business Warehouse, we have found two approaches that work in a variety of use cases.

Setup

In this scenario we have examined an S/4HANA OnPrem system which was set up as a trial instance via the SAP Cloud Application Library (CAL) and serves as a data source for our internal Datasphere tenant. We have established a connection between S/4HANA and Datasphere as well as configured a Data Provisioning Agent to facilitate Remote Tables and the Real-Time-Replication functionality.

Our sample Architecture consists of S/4HANA Change Data Capture (CDC) enabled Core Data Service (CDS) Views, which are accessed as Remote Tables in Datasphere and are acting as the staging layer.

The inclined reader might enjoy reading more about the way CDC in CDS Views works at:
CDS based data extraction – Part II Delta Handling | SAP Blogs

At this point however it should be sufficient to note that CDC allows the target system to recognize which rows have been changed in the source object since it has last been replicated.

Approaches

We have determined two major design approaches to implement delta loading in an enterprise scenario using Datasphere:

Real-Time-Replication on Remote Tables

The easiest way to implement delta loading is to leverage CDC enabled CDS Views by importing these as Remote Tables in Datasphere and enabling Real-Time access in the Data Integration Monitor for them.

Blogpost Mid-August DWC_Delta Loading

This will ensure that the Remote Table in Datasphere is a near real-time updated copy of the CDS View in the source. While this is a very simple, quick and effective approach, it also introduces some limitations.

a) The refresh frequency cannot be adjusted
While there are signs that this feature might be introduced by SAP in the midterm, it is currently not possible to adjust the frequency of the replication, meaning it will occur near real-time. While this is not an issue for most scenarios, clients that are used to nightly upload cycles will find that a change management concept will be necessary, since source system changes will be present almost instantly in the DWH instead of being available on the next business day only.

b) The Remote Table is always a 1-1 copy of the source
Since we are replicating a Remote Table and a Remote Table is just a copy of the metadata of the source object, we cannot adjust it in Datasphere, as we might be used to, by e.g. creating additional fields. Adjustments in subsequently used Views are still possible of course.


Watch the recording of our webinar:
SAP Datasphere - Is it ready for you? 

 

Neuer Call-to-Action


Data Flows with filter on suitable delta indicator

This approach necessitates finding a suitable field in the source object which can be used as a delta indicator. Ideally the source needs to have something like a LastChangeDate field, recording the datetime as a new record is created, a record is deleted, or an existing one is changed. For the deletion scenario a binary field like DeletionFlag would be required additionally. If these requirements are met, we can follow the approach in Datasphere by creating a Data Flow object, inserting a Remote Table, a local Target Table and a filter, limiting the Data Flow to e.g. LastChangeDate = CurrentDate - 1. Afterwards we would schedule this Data Flow to run every night. This way each nightly run will always apply a filter to fetch only those records that were modified on the day before.

Blogpost Mid-August DWC_Delta Loading

This approach will work for inserts and updates, if you can guarantee that all those changes are reflected in a field like LastChangeDate, but the deletion scenario would only be solved if one of the following applies:

a) Deletions in the source are not possible

In an ERP source system many potential source objects could already be set up in such a way, that they will never delete any record.

b) Deletions in source are done via deletion flag

If deletions do happen in the source object, then it is necessary that it is not done via an actual deletion of the row, but by setting an indicator field like DeletionFlag instead.

c) Deletions in source don’t need to be deleted in DWH

Even if deletions do happen in the source object and they are done via actual deletion of the row, then if atleast the requirements of the Datsphere model does not necessitate a deletion in the Data Warehouse to reflect the source, then the deletion problem is solved. Edge cases still have to be considered like e.g. creation and deletion on the same business day would never appear in the DWH model.

If none of the above apply, or even if there is no LastChangeDate-esque field to handle inserts/updates, it is still possible to implement a pseudo delta by doing some SQL based source/target comparisons to determine which records are modified and should therefore be transferred. Unfortunately this approach has far greater performance impact since we have to fetch additional data from the source to facilitate this comparison. If all else fails, this can be used as a last resort.

Delta Loading - Our Conclusion

We have shown two major approaches to implementing a delta mechanism in Datasphere. These are suitable to cover some of the most common scenarios. The approach of activating Real-Time-Replication on Remote Tables is the most convenient solution in integration scenarios where it is available and where the limitations are a non issue. Other cases can be mostly covered with the Data Flow approach, as long as the described limitations are considered.

It should be mentioned that there are other possible solutions that we explored, including but not limited to some which would require the inclusion of additional software components like SAP Landscape Transformation Replication Server (SLT) or SAP Data Intelligence. However unless your company already utilizes these software components, we would suggest going with a pure Datasphere approach so as to avoid overengineering.

While Datasphere continues to be developed and supplied with additional features we hope to have more freedom in the setup of these approaches so that we may cover more complex scenarios while maintaining the current clever architecture that preserves a minimal performance impact.

Do you have questions about this or other topics? Are you trying to build up the necessary know-how in your department or do you need support with a specific question? We are happy to help you. Request a non-binding consulting offer today.

Learn more about  SAP Datasphere

,

avatar

Irvin

Irvin has worked with HANA Native and Datasphere since 2019. He can primarily draw on experience as a consultant and in development on the XSA platform using SQLScript. In his spare time, he is passionate about playing basketball and is also a big NBA fan.

Got a question about this blog?
Ask Irvin

Blog - NextLytics AG 

Welcome to our blog. In this section we regularly report on news and background information on topics such as SAP Business Intelligence (BI), SAP Dashboarding with Lumira Designer or SAP Analytics Cloud, Machine Learning with SAP BW, Data Science and Planning with SAP Business Planning and Consolidation (BPC), SAP Integrated Planning (IP) and SAC Planning and much more.

Subscribe to our newsletter

Related Posts

Recent Posts